【题目】如图,在正方形ABCD的对角线AC上取点E,使得∠CDE=15°,连接BE.延长BE到F,连接CF,使得CF=BC.
(1)求证:DE=BE;
(2)求证:EF=CE+DE.
![]()
参考答案:
【答案】(1)证明见解析;(2)证明见解析.
【解析】试题分析:(1)由正方形的性质可以得出AB=AD,∠BAC=∠DAC=45°,通过证明△ABE≌△ADE,就可以得出结论;
(2)在EF上取一点G,使EG=EC,连结CG,再通过条件证明△DEC≌△FGC就可以得出结论.
试题解析:(1)∵四边形ABCD是正方形,
∴AB=AD,∠ABC=∠ADC=90°,
∠BAC=∠DAC=45°.
∵在△ABE和△ADE中,
,
∴△ABE≌△ADE(SAS),
∴BE=DE.
(2)在EF上取一点G,使EG=EC,连结CG,
![]()
∵△ABE≌△ADE,
∴∠ABE=∠ADE.
∴∠CBE=∠CDE,
∵BC=CF,∴∠CBE=∠F,
∵∠CDE=15°,∴∠CBE=15°,
∴∠CEG=60°.
∵CE=GE,∴△CEG是等边三角形.
∴∠CGE=60°,CE=GC,
∴∠GCF=45°,
∴∠ECD=GCF.
∵在△DEC和△FGC中,
,
∴△DEC≌△FGC(SAS),
∴DE=GF.
∵EF=EG+GF,
∴EF=CE+ED.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司以81710000元的价格中标我市城市轨道交通6号线工程,81710000用科学记数法精确到1000000,可表示为( )
A. 8.1×107 B. 8.1×108 C. 8.2×107 D. 8.2×108
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果点M(a-1,a+1)在x轴上,则a的值为( )
A. a=1B. a=-1C. a>0D. a的值不能确定
-
科目: 来源: 题型:
查看答案和解析>>【题目】若一次函数y=ax+b (a ,b为常数且a≠0)满足下表:
x
-2
-1
0
1
2
3
y
6
4
2
0
-2
-4
则方程ax+b=0的解是( )
A. x=l B. x=-1 C. x=2 D. x=3
-
科目: 来源: 题型:
查看答案和解析>>【题目】任意写一个个位数字不为零的四位正整数A,将该正整数A的各位数字顺序颠倒过来,得到四位正整数B,则称A和B为一对四位回文数.例如A=2016,B=6102,则A和B就是一对四位回文数,现将A的回文数B从左往右,依次顺取三个数字组成一个新数,最后不足三个数字时,将开头的一个数字或两个数字顺次接到末尾,在组成三位新数时,如遇最高位数字为零,则去掉最高位数字,由剩下的两个或一个数字组成新数,将得到的所有新数求和,把这个和称为A的回文数B作三位数的和.例如将6102依次顺取三个数字组成的新数分别为:610,102,26,261,它们的和为:610+102+26+261=999,把999称为2016的回文数作三位数的和.
(1)请直接写出一对四位回文数:猜想一个四位正整数的回文数作三位数的和能否被111整除?并说明理由;
(2)已知一个四位正整数
(千位数字为1,百位数字为x且0≤x≤9,十位数字为1,个位数字为y且0≤y≤9)的回文数作三位数的和能被27整除,请求出x与y的数量关系. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx﹣2与x轴交于A、B两点,与y轴交于点C,已知A(﹣1,0),且tan∠ABC=
.(1)求抛物线的解折式.
(2)在直线BC下方抛物线上一点P,当四边形OCPB的面积取得最大值时,求此时点P的坐标.
(3)在y轴的左侧抛物线上有一点M,满足∠MBA=∠ABC,若点N是直线BC上一点,当△MNB为等腰三角形时,求点N的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】有专家指出:人为型空气污染(如汽车尾气排放等)是雾霾天气的重要成因.某校为倡议“每人少开一天车,共建绿色家园”,想了解学生上学的交通方式.九年级(8)班的5名同学联合设计了一份调查问卷.对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:
(1)本次接受调查的总人数是 人,扇形统计图中“骑自行车”所在扇形的圆心角度数是 度,请补全条形统计图;
(2)已知这5名学生中有2名女同学,要从这5名学生中任选两名同学汇报调查结果.请用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.

相关试题