【题目】如图,已知△ABF≌△CDE.
(1)若∠B=30°,∠DCF=40°,求∠EFC的度数;
(2)若BD=10,EF=2,求BF的长.
![]()
参考答案:
【答案】(1)70°;(2)6.
【解析】
(1)根据△ABF≌△CDE,可知∠B=∠D,进而利用外角性质求出∠EFC的度数即可;(2)由△ABF≌△CDE可知BF=DE,进而BE=DF,根据BD=10,EF=2即可求出BE=DF=4,进而求出BF的长即可.
(1)∵△ABF≌△CDE,
∴∠B=∠D.
∵∠B=30°,
∴∠D=30°.
∵∠DCF=40°,
∴∠EFC=∠D+∠DCF=70°.
(2)∵△ABF≌△CDE,
∴BF=DE
.∵BF=BE+EF,DE=DF+EF,
∴BE=DF.
∵BD=10,EF=2,
∴BE+DF=BD-EF=8,
∴BE=DF=4,
∴BF=BE+EF=6.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,三角形A`B`C`是由三角形ABC经过某种平移得到的,点A与点A`,点B与点B`,点C与点C`分别对应,观察点与点坐标之间的关系,解答下列问题:
分别写出点A、点B、点C、点A`、点B`、点C`的坐标,并说明三角形A`B`C`是由三角形ABC经过怎样的平移得到的.
若点
是点
通过
中的平移变换得到的,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB,CD,EF相交于点O.
(1)写出∠COE的邻补角;
(2)分别写出∠COE和∠BOE的对顶角;
(3)如果∠BOD=60°,∠BOF=90°,求∠AOF和∠FOC的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.
(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B= °;
(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.
(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知
,
,
,点E在线段AB上,
,点F在直线AD上,
.
若
,求
的度数;
找出图中与
相等的角,并说明理由;
在
的条件下,点
不与点B、H重合
从点B出发,沿射线BG的方向移动,其他条件不变,请直接写出
的度数
不必说明理由
. -
科目: 来源: 题型:
查看答案和解析>>【题目】元旦是公历新一年的第一天.“元旦”一词最早出现于《晋书》:“颛帝以孟夏正月为元,其实正朔元旦之春.”中国古代曾以腊月、十月等的月首为元旦,1949年中华人民共和国以公历1月1日为元旦,因此元旦在中国也被称为“阳历年”.为庆祝元旦,太原某商场举行促销活动,促销的方法是“消费超过200元时,所购买的商品按原价打8折后,再减少20元”.若某商品的原价为
元,则购买该商品实际付款的金额是( )A.
元B.
元C.
元D.
元 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,AB=CB,AD=CD,对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E、F.求证:OE=OF.

相关试题