【题目】在△ABC 中,D 是 BC 边的中点,E、F 分别在 AD 及其延长线上,CE∥BF,连接BE、CF.
(1)求证:△BDF ≌△CDE;
(2)若 DE =
BC,试判断四边形 BFCE 是怎样的四边形,并证明你的结论.
![]()
参考答案:
【答案】见解析
【解析】
(1)由已知条件易得∠CED=∠BFD,BD=CD,结合∠BDF=∠CDE即可证得:△BDF≌△CDE;
(2)由△BDF≌△CDE易得DE=DF,结合BD=CD可得四边形BFCE是平行四边形,结合DE=
BC可得EF=BC,由此即可证得平行四边形BFCE是矩形.
(1)∵CE∥BF,
∴∠CED=∠BFD.
∵D是BC边的中点,
∴BD=DC,
在△BDF和△CDE中,
,
∴△BDF≌△CDE(AAS).
(2)四边形BFCE是矩形.理由如下:
∵△BDF≌△CDE,
∴DE=DF,
又∵BD=DC,
∴四边形BFCE是平行四边形.
∵DE=
BC,DE=
EF,
∴BC=EF,
∴平行四边形BFCE是矩形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在公路 MN 两侧分别有 A
, A
......A
,七个工厂,各工厂与公路 MN(图中粗线)之间有小公路连接.现在需要在公路 MN 上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是( ).①车站的位置设在 C 点好于 B 点;
②车站的位置设在 B 点与 C 点之问公路上任何一点效果一样;
③车站位置的设置与各段小公路的长度无关.

A.①B.②C.①③D.②③
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角
∠CED=60°,在离电线杆6米的B处安置测角仪AB,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长 (结果精确到0.1米,参考数据:
≈1.414,
≈1.732).
-
科目: 来源: 题型:
查看答案和解析>>【题目】直接填答案:
①(-5)+(-5)=______;②(-5)+(+8)=______;③90
(-3)=______;④(-5)-(-3)=______;⑤-16-8=_____;⑥8-16=______;
⑦
=______;⑧
=_____。⑨
=_____;⑩
=______。 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:
(1)EA是∠QED的平分线;
(2)EF2=BE2+DF2.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下面为某年11月的日历:
日
一
二
三
四
五
六
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
(1)在日历上任意圈出一个竖列上相邻的3个数;
①设中间的一个数为
,则另外的两个数为 、 ; ②若已知这三个数的和为42,则这三天都在星期 ;
(2)在日历上用一个小正方形任意圈出其中的9个数,设圈出的9个数的中心的数为b,若这9个数的和为153,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.

(1)若点P到点A、点B的距离相等,求点P对应的数;
(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由.
(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?
相关试题