【题目】(2016湖北省荆州市第24题)已知在关于x的分式方程
①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.
(1)求k的取值范围;
(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;
(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.
参考答案:
【答案】(1)、k≥﹣1且k≠1且k≠2;(2)、x=0、1、2、3;(3)、不成立;理由见解析.
【解析】
试题分析:(1)、先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出k的取值;(2)、先把k=m+2,n=1代入方程②化简,由方程②有两个整数实根得△是完全平方数,列等式得出关于m的等式,由根与系数的关系和两个整数根x1、x2得出m=1和﹣1,分别代入方程后解出即可;(3)、根据(1)中k的取值和k为负整数得出k=﹣1,化简已知所给的等式,并将两根和与积代入计算求出m的值,做出判断.
试题解析:(1)、∵关于x的分式方程
的根为非负数, ∴x≥0且x≠1,
又∵x=
≥0,且
≠1, ∴解得k≥﹣1且k≠1,
又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0, ∴k≠2,
综上可得:k≥﹣1且k≠1且k≠2;
(2)、∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有两个整数根x1、x2,且k=m+2,n=1时,
∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,
∴△≥0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0, ∴△=9m2﹣4m(m﹣1)=m(5m+4),
∵x1、x2是整数,k、m都是整数, ∵x1+x2=3,x1x2=
=1﹣
, ∴1﹣
为整数,
∴m=1或﹣1, ∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0, x2﹣3x=0,
x(x﹣3)=0, x1=0,x2=3;
把m=﹣1代入方程mx2﹣3mx+m﹣1=0得:﹣x2+3x﹣2=0, x2﹣3x+2=0, (x﹣1)(x﹣2)=0, x1=1,x2=2;
(3)|m|≤2不成立,理由是:
由(1)知:k≥﹣1且k≠1且k≠2, ∵k是负整数, ∴k=﹣1,
(2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x1、x2,
∴x1+x2=﹣
=
=﹣m,x1x2=
=
,
x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k), x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,
x12+x22═x1x2+k2, (x1+x2)2﹣2x1x2﹣x1x2=k2, (x1+x2)2﹣3x1x2=k2,
(﹣m)2﹣3×
=(﹣1)2, m2﹣4=1, m2=5, m=±
, ∴|m|≤2不成立.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一名守门员练习沿直线折返跑,从球门线出发,向前记做正数,返回记做负数,他的记录如下(单位:m):+5,-3,+10,-8,-6,+12,-10.
(1)在这次往返跑中,守门员一共跑了多少米?
(2)请你借助数轴知识进行分析,回答守门员离开球门线最远是多少米?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线PA是一次函数y=x+1的图象,直线PB是一次函数y=﹣2x+2的图象.

(1)求A、B、P三点的坐标;
(2)求四边形PQOB的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果点P(4,5)和点Q(a,b)关于原点对称,则点Q的坐标为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(2016广西省贺州市第24题)某地区2014年投入教育经费2900万元,2016年投入教育经费3509万元.
(1)求2014年至2016年该地区投入教育经费的年平均增长率;
(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2018年需投入教育经费4250万元,如果按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费是否能达到4250万元?请说明理由.
(参考数据:
=1.1,
=1.2,
=1.3,
=1.4) -
科目: 来源: 题型:
查看答案和解析>>【题目】写出命题“等边三角形有一个角等于60°”的逆命题 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是_____.
相关试题