【题目】如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为 . ![]()
参考答案:
【答案】6
【解析】解:连接BD,DE,
![]()
∵四边形ABCD是正方形,
∴点B与点D关于直线AC对称,
∴DE的长即为BQ+QE的最小值,
∵DE=BQ+QE=
=
=5,
∴△BEQ周长的最小值=DE+BE=5+1=6.
所以答案是:6.
【考点精析】利用勾股定理的概念和正方形的性质对题目进行判断即可得到答案,需要熟知直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,PA、PB、AB都与⊙O相切,∠P=60°,则∠AOB等于( )

A.50°
B.60°
C.70°
D.70° -
科目: 来源: 题型:
查看答案和解析>>【题目】2019年双“11”期间,哈市各大商场掀起购物狂潮,现有甲、乙、丙三个商场开展的促销活动如下表所示:

根据以上活动信息,解决以下问题:
(1)三个商场都同时出售一套(一件上衣和一条裤子为一套)同厂家、同面料、同款式的服装,其中上衣标价都为290元,裤子标价都为270元.试计算三个商场分别按照促销活动销售出这一套服装的售价是多少元?
(2)赵先生发现在甲、乙商场同时出售一件标价380元的上衣和一条标价300多元的裤子,最后付款额也一样,请问这条裤子的标价是多少元?
(3)如果某种品牌的巴西大豆在三所商场的标价都是5元/
,请探究:是否存在分别在三所商场付同样多的一百多元,并且都能够够买同样重量同品牌的该大豆?如果存在请直接说明在乙商场该购买大豆的方案(并指出在三个商场购买大豆的重量是多少
,支付的费用是多少元);如果不存在请直接回答“不存在”. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O的半径为5,P为⊙O上一点,P(4,3),PC、PD为⊙O的弦,分别交y轴正半轴于E、F,且PE=PF,连CD,设直线CD为y=kx+b,则k= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在数轴上点A,点B对应的数分别是6,﹣6,∠DCE=90°(点C与点O重合,点D在数轴的正半轴上)
(1)如图1,若CF平分∠ACE,则∠AOF= 度;点A与点B的距离=

(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.

①当t=1时,α= ;点B与点C的距离=
②猜想∠BCE和α的数量关系,并说明理由;
(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴的正半轴向右平移t(0
t
3)个单位,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t(0
t
3)个单位,再绕点顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α与β满足|α﹣β|=20°,求t的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知在四边形ABCD中,∠A=∠C=90°.
(1)∠ABC+∠ADC= °;
(2)如图①,若DE平分∠ADC,BF平分∠ABC的外角,请写出DE与BF的位置关系,并证明;
(3)如图②,若BE,DE分别四等分∠ABC、∠ADC的外角(即∠CDE=
∠CDN,∠CBE=
∠CBM),试求∠E的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】学校为了解学生对新闻、体育、动画、娱乐、戏曲类电视节目的喜爱情况,采用抽样的方法在七年级选取了一个班的同学,通过问卷调查,收集数据、整理数据,制作了如下两个整统计图,请根据下面两个不完整的统计图分析数据,回答以下问题:

(1)七年级的这个班共有学生_____人,图中
______,
______,在扇形统计图中,“体育”类电视节目对应的圆心角为:______.(2)补全条形统计图;
(3)根据抽样调查的结果,估算该校1750名学生中大约有多少人喜欢“娱乐”类电视节目?
相关试题