【题目】下列说法正确的有( )
①同位角相等;
②若∠A+∠B+∠C=180°,则∠A、∠B、∠C互补;
③同一平面内的三条直线a、b、c,若a∥b,c与a相交,则c与b相交;
④同一平面内两条直线的位置关系可能是平行或垂直;
⑤有公共顶点并且相等的角是对顶角.
A. 1个B. 2个C. 3个D. 4个
参考答案:
【答案】A
【解析】
根据相交直线的位置关系综合判定即可.
解:∵同位角不一定相等,∴①错误;
∵互补或互余是两个角之间的关系,∴说∠A+∠B+∠C=180°,则∠A、∠B、∠C互补错误,∴②错误;
∵同一平面内的三条直线a、b、c,若a∥b,c与a相交,则c与b相交,∴③正确;
∵同一平面内两条直线的位置关系可能是平行或相交,∴④错误;
∵如图,![]()
∠ABC=∠ABD,∠ABC和∠ABD有公共顶点并且相等的角,但不是对顶角,∴⑤错误;
即正确的个数是1个,
故选:A.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店分两次购进
、
两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)
购进所需费用(元)
第一次
30
40
3800
第二次
40
30
3200
(1)求
、
两种商品每件的进价分别是多少元?(2)商场决定
种商品以每件30元出售,
种商品以每件100元出售.为满足市场需求,需购进
、
两种商品共1000件,且
种商品的数量不少于
种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠ABE=∠ACD=Rt∠,AE=AD,∠ABC=∠ACB.求证:∠BAE=∠CAD.

请补全证明过程,并在括号里写上理由.
证明:在△ABC中,
∵∠ABC=∠ACB
∴AB= ( )
在Rt△ABE和Rt△ACD中,
∵ =AC, =AD
∴Rt△ABE≌Rt△ACD( )
∴∠BAE=∠CAD( )
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC中,∠C=90°,AC=3,BC=4,P是斜边AB上一动点(不与点A、B重合),PQ⊥AB交△ABC的直角边于点Q,设AP为x,△APQ的面积为y,则下列图象中,能表示y关于x的函数关系的图象大致是( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,点P与点Q不重合,以点P为圆心作经过Q的圆,则称该圆为点P、Q的“相关圆”

(1)已知点P的坐标为(2,0) ①若点Q的坐标为(0,1),求点P、Q的“相关圆”的面积;
②若点Q的坐标为(3,n),且点P、Q的“相关圆”的半径为
,求n的值;
(2)已知△ABC为等边三角形,点A和点B的坐标分别为(﹣
,0)、(
,0),点C在y轴正半轴上,若点P、Q的“相关圆”恰好是△ABC的内切圆且点Q在直线y=2x上,求点Q的坐标.
(3)已知△ABC三个顶点的坐标为:A(﹣3,0)、B(
,0),C(0,4),点P的坐标为(0,
),点Q的坐标为(m,
),若点P、Q的“相关圆”与△ABC的三边中至少一边存在公共点,直接写出m的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1 , 作正方形A1B1C1C,延长C1B1交x轴于点A2 , 作正方形A2B2C2C1,………按这样的规律进行下去,第2012个正方形的面积为( )

A.
B.
C.
D.
相关试题