【题目】如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(5,3),点C(0,8),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.
(1)求该二次函数的解析式及点M的坐标;
(2)求△ABC的面积;
(3)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围.
![]()
参考答案:
【答案】(1)y=﹣x2+4x+8,M(2,12);(2)15;(3)6<m<9.
【解析】试题分析:(1)把点A、C的坐标代入函数解析式,用待定系数法求出抛物线解析式;
(2)结合点A、B、C的坐标,三角形的面积公式进行解答;
(3)点M是沿着对称轴直线x=2向下平移的,可先求出直线AC的解析式,将x=2代入求出点M在向下平移时与AC、AB相交时y的值,即可得到m的取值范围.
解:(1)把点A(5,3),点C(0,8)代入二次函数y=﹣x2+bx+c,得
,
解得
,
∴二次函数解析式为y=﹣x2+4x+8,配方得y=﹣(x﹣2)2+12
∴点M的坐标为(2,12);
(2)由(1)知,抛物线的对称轴是x=2.
∵A(5,3),AB∥x轴,
∴AB=6,D(0,3)
∵C(0,8),
∴CD=5,
∴△ABC的面积=
ABCD=
×6×5=15,
即△ABC的面积=15;
(3)设直线AC解析式为y=kx+b,把点A(5,3),C(0,8)代入
,
解得
,
∴直线AC的解析式为y=﹣x+8,对称轴直线x=2与△ABC两边分别交于点E、点F,
把x=2代入直线AC解析式y=﹣x+8,
解得y=6,则点E坐标为(2,6),点F坐标为(2,3)
∴3<12﹣m<6,解得6<m<9.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,
①写出A、B、C的坐标.
②以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出A1、B1、C1.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长37米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?如图是两位学生争议的情境:请根据上面的信息,解决问题:
(1)设AB=x米(x>0),试用含x的代数式表示BC的长;
(2)请你判断谁的说法正确,为什么?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知一次函数y=-2x+2.
(1)画出它的图象;
(2)求图象与x轴的交点A,与y轴的交点B的坐标;
(3)求A、B两点之间的距离;
(4)观察图象回答,当x为何值时,y≥0?
-
科目: 来源: 题型:
查看答案和解析>>【题目】点P(﹣2,3)到x轴的距离为( )
A.﹣2
B.1
C.2
D.3 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D点,OC交AB于E点.
(1)求∠D的度数;
(2)求证:AC2=ADCE.

-
科目: 来源: 题型:
查看答案和解析>>【题目】解不等式组:
,并在数轴上表示出不等式组的解集.
相关试题