【题目】如图1是一个新款水杯,水杯不盛水时按如图2所示的位置放置,这样可以快速晾干杯底,干净透气;将图2的主体部分的抽象成图3,此时杯口与水平直线的夹角35°,四边形ABCD可以看作矩形,测得AB=10cm,BC=8cm,过点A作AF⊥CE,交CE于点F. ![]()
(1)求∠BAF的度数;(sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002)
(2)求点A到水平直线CE的距离AF的长(精确到0.1cm)
参考答案:
【答案】
(1)解:作BM⊥AF于M,BN⊥CF于N.
∵AF⊥EN,
∴∠MFN=∠BMF=∠BNF=90°,
∴四边形BMFN是矩形.
∴BM∥FN,
∴∠MBC=∠BCN=35°,
∵四边形ABCD是矩形,
∴∠ABC=90°,
∴∠ABM=90°﹣∠MBC=55°,
∴∠FAB=90°﹣∠ABM=35°,
故答案为35°
![]()
(2)解:在Rt△CBN中,∵BC=8,
∴FM=NB=BCtan35°=0.5736×8≈4.59,
在Rt△ABM中,AM=ABcos35°=10×0.8102≈8.20,
∴AF=AM+FM=8.20+4.59≈12.8(cm)
【解析】(1)作BM⊥AF于M,BN⊥CF于N.由BM∥FN,推出∠MBC=∠BCN=35°,由题意∠ABM=90°﹣∠MBC=55°,推出∠FAB=90°﹣∠ABM=35°.(2)分别在Rt△CBN,Rt△ABM中求出AM、BN即可解决问题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图中的图像(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为80.8千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减小.⑤汽车离出发地64千米是在汽车出发后1.2小时时。其中正确的说法共有( )

A.1个 B.2个 C.3个 D.4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是
上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是( ) 
A.15°
B.20°
C.25°
D.30° -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:E、F是ABCD的对角线AC上的两点,AF=CE,求证:∠CDF=∠ABE.

-
科目: 来源: 题型:
查看答案和解析>>【题目】因市场竞争激烈,国商进行促销活动,决定对学习用品进行打八折出售,打折前,买2本笔记本和1支圆珠笔需要18元,买1本笔记本和2支圆珠笔需要12元.
(1)求打折前1本笔记本,1支圆珠笔各需要多少元.
(2)在促销活动时间内,购买50本笔记本和40支圆珠笔共需要多少元? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平面直角坐标系中,已知点A(﹣1,2),B(﹣2,0),C(﹣4,1),把三角形ABC向上平移1个单位长度,向右平移5个单位长度,可以得到三角形A′B′C′.
(Ⅰ)在图中画出△A′B′C′;
(Ⅱ)直接写出点A′、B′、C′的坐标;
(Ⅲ)写出A′C′与AC之间的位置关系和大小关系.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了考察某种大麦细长的分布情况,在一块试验田里抽取了部分麦穗.测得它们的长度,数据整理后的频数分布表及频数分直方图如下.根据以下信息,解答下列问题:
穗长x
频数
4.0≤x<4.3
1
4.3≤x<4.6
1
4.6≤x<4.9
2
4.9≤x<5.2
5
5.2≤x<5.5
11
5.5≤x<5.8
15
5.8≤x<6.1
28
6.1≤x<6.4
13
6.4≤x<6.7
11
6.7≤x<7.0
10
7.0≤x<7.3
2
7.3≤x<7.6
1
(Ⅰ)补全直方图;
(Ⅱ)共抽取了麦穗 棵;
(Ⅲ)频数分布表的组距是 ,组数是 ;
(Ⅳ)麦穗长度在5.8≤x<6.1范围内麦穗有多少棵?占抽取麦穗的百分之几?

相关试题