【题目】下表是某校女子羽毛球队队员的年龄分布:
年龄/岁 | 13 | 14 | 15 | 16 |
人数 | 1 | 1 | 2 | 1 |
则该校女子排球队队员年龄的中位数为__________岁.
参考答案:
【答案】15.
【解析】
中位数有2种情况,共有2n+1个数据时,从小到大排列后,,中位数应为第n+1个数据,可见,大于中位数与小于中位数的数据都为n个;共有2n+2个数据时,从小到大排列后,中位数为中间两个数据平均值,大小介于这两个数据之间,可见大于中位数与小于中位数的数据都为n+1个,所以这组数据中大于或小于这个中位数的数据各占一半,中位数有一个.
解:总数据有5个,中位数是从小到大排,第3个数据为中位数,即15为这组数据的中位数.
故答案为:15
-
科目: 来源: 题型:
查看答案和解析>>【题目】根据下列条件可列出一元一次方程的是( )
A. a与1的和的3倍
B. 甲数的2倍与乙数的3倍的和
C. a与b的差的20%
D. 一个数的3倍是5
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个不透明的袋中装有红、白、黄3种颜色的若干个小球,它们除颜色外完全相同.每次从袋中摸出1个球,记下颜色后放回搅匀再摸.摸球实验中,统计得到下表中的数据:
摸球次数
10
20
50
100
150
200
250
300
400
500
出现红球的频数
4
9
16
31
44
61
74
92
118
147
出现白球的频数
1
4
16
36
52
61
75
85
123
151
由此可以估计摸到黄球的概率约为________(精确到0.1).
-
科目: 来源: 题型:
查看答案和解析>>【题目】某种药品说明书上标明保存温度是(20±3)0C,则该药品在( )范围内保存最合适.
A. 170C~200C B. 200C ~230C C. 170C ~230C D. 170C ~240C
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列4个事件:①异号两数相加,和为负数;②异号两数相减,差为正数;③异号两数相乘,积为正数;④异号两数相除,商为负数.必然事件是________,不可能事件是________,随机事件是________.(将事件的序号填上即可)
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列关于单项式乘法的说法中不正确的是( )
A. 单项式之积不可能是多项式;
B. 单项式必须是同类项才能相乘;
C. 几个单项式相乘,有一个因式为0,积一定为0;
D. 几个单项式的积仍是单项式
-
科目: 来源: 题型:
查看答案和解析>>【题目】著名的瑞士数学家欧拉曾指出:可以表示为四个整数平方之和的甲、乙两数相乘,其乘积仍然可以表示为四个整数平方之和,即
,这就是著名的欧拉恒等式,有人称这样的数为“不变心的数”.实际上,上述结论可减弱为:可以表示为两个整数平方之和的甲、乙两数相乘,其乘积仍然可以表示为两个整数平方之和.【动手一试】
试将
改成两个整数平方之和的形式.
;【阅读思考】
在数学思想中,有种解题技巧称之为“无中生有”.例如问题:将代数式
改成两个平方之差的形式.解:原式
﹒【解决问题】
请你灵活运用利用上述思想来解决“不变心的数”问题:将代数式
改成两个整数平方之和的形式(其中a、b、c、d均为整数),并给出详细的推导过程﹒
相关试题