【题目】如图,正比例函数y=2x的图象与反比例函数y= k x 的图象交于A、B两点,过点A作AC垂直x轴于点C,连结BC.若△ABC的面积为2.![]()
(1)求k的值;
(2)利用图象求出不等式2x>
的解集.
参考答案:
【答案】
(1)
解:设点A的坐标为(m,n).
∵点A在直线y=2x上,∴n=2m.
根据对称性可得OA=OB,
∴S△ABC=2S△ACO=2,
∴S△ACO=1,
∴
m2m=1,
∴m=1(舍负),
∴点A的坐标为(1,2),
∴k=1×2=2;
(2)
解:如图,
![]()
由点A与点B关于点O成中心对称得点B(﹣1,﹣2).
结合图象可得:不等式2x>
的解集为x>1或﹣1<x<0
;
解:如图,
![]()
由点A与点B关于点O成中心对称得点B(﹣1,﹣2).
结合图象可得:不等式2x>
的解集为x>1或﹣1<x<0
;
;
解:如图,
![]()
由点A与点B关于点O成中心对称得点B(﹣1,﹣2).
结合图象可得:不等式2x>
的解集为x>1或﹣1<x<0
【解析】(1)根据对称性可得OA=OB,从而可得△ACO的面积为1,由此可求出点A的坐标,然后运用待定系数法就可解决问题;(2)只需求出点B的坐标,并运用数形结合的思想就可解决问题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为进一步推广“阳光体育”大课间活动,某中学对已开设的A实心球,B立定跳远,C跑步,D跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:
(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;
(2)随机抽取了5名喜欢“跑步”的学生,其中有3名女生,2名男生,现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我市校计划购买甲、乙两种树苗共200株来绿化校园,甲种树苗每株25元,乙种树苗每株30元,通过调查了解,甲乙两种树苗成活率分别是90%和95%.
(1)若购买这种树苗共用去5600元,则甲、乙两种树苗各购买了多少株?
(2)如果要求这200株树苗的成活率不低于93%,那么乙种树苗至少要购买多少株. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,BD是△ABC的角平分线,点E,F分别在BC、AB上,且DE∥AB,EF∥AC.

(1)求证:BE=AF;
(2)若∠ABC=60°,BD=6,求四边形ADEF的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.

(1)求证:直线PA为⊙O的切线;
(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;
(3)若BC=6,tan∠F=
,求cos∠ACB的值和线段PE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线的解析式为
.
(1)若抛物线与x轴总有交点,求c的取值范围;
(2)设抛物线与x轴两个交点为A(x1 , 0),B(x2 , 0),且x2>x1 , 若x2﹣x1=5,求c的值;
(3)在(2)的条件下,设抛物线与y轴的交点为C,抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,反映的是九(1)班学生外出乘车、步行、骑车的人数直方图的一部分和圆形分布图,下列说法①①九(1)班外出步行有8人;②在圆形统计图中,步行人数所占的圆心角度数为82°;③九(1)班外出的学生共有40人;④若该校九年级外出的学生共有500人,那么估计全年级外出骑车的人约有150人,其中正确的结论是( )

A.①②③
B.①③④
C.②③
D.②④
相关试题