【题目】如图,在6×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点C时,两个点都停止运动.运动时间t 为_______秒时,△PQB成为以PQ为腰的等腰三角形.
![]()
参考答案:
【答案】
或![]()
【解析】
作QS⊥FE于S, △PQB是以PQ为腰的等腰三角形分以下两种情况分别求解,①当PB=PQ时,由
;②当QB=QP时,![]()
QB=8-t,求解即可
解:如图:作QS⊥FE于S
![]()
由题意得:PD=2t,AQ=t,则PS=2t-t=t
在Rt△PSQ中,
,
∴![]()
①当PB=PQ时,
;
解得:t=
或8(舍去)
②当QB=QP时,
解得:t=![]()
故运动时间为
或
秒时,△PQB是以PQ为腰的等腰三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司有2位股东,25名工人,从2006年至2008年,公司每年股东的总利润和每年工人的工资总额如图所示.

(1)填写下表
年份
2006年
2007年
2008年
工人的平均工资/元
股东的平均工资/元
(2)假设在以后的若干年中,每年工人的工资和股东的利润都按图中的速度增长,那么到哪一年,股东的平均利润是工人的平均工资的10倍?
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个不透明的口袋里装有分别标有汉字“书”、“ 香”、“ 历”、“ 城”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.
(1)若从中任取一个球,球上的汉字刚好是 “书”的概率为__________.
(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出的两个球上的汉字能组成“历城”的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读材料:
小明是个爱动脑筋的学生,他在学习了二元一次方程组后遇到了这样一道题目:现有8个大小相同的长方形,可拼成如图1、2所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,求每个小长方形的面积.
小明设小长方形的长为x,宽为y,观察图形得出关于x、y的二元一次方程组,解出x、y的值,再根据长方形的面积公式得出每个小长方形的面积.
解决问题:
(1)请按照小明的思路完成上述问题:求每个小长方形的面积;
(2)某周末上午,小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图3所示.若小明把13个纸杯整齐叠放在一起时,它的高度约是 cm;
(3)小明进行自主拓展学习时遇到了以下这道题目:如图,长方形ABCD中放置8个形状、大小都相同的小长方形(尺寸如图4),求图中阴影部分的面积,请给出解答过程.

-
科目: 来源: 题型:
查看答案和解析>>【题目】小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,把手AM的仰角α=37°,此时把手端点A、出水口B和点落水点C在同一直线上,洗手盆及水龙头的相关数据如图2.(参考数据:sin37°=
,cos37°=
,tan37°=
)求把手端点A到BD的距离;
求CH的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,A(-1,5),B(-2,0),C(-4,3).
(1)请画出△ABC关于y轴对称的△A,B,C,,并写出点C的坐标;
(2)求△ABC的面积;
(3)在y轴上画出点P的位置,使线段PA+PB的值最小,并直接写出PA+PB的最小值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某种型号汽车油箱容量为40升,每行驶100千米耗油10升.设一辆加满油的该型号汽车行驶路程为x(千米),行驶过程中油箱内剩余油量为y(升).
(1)求y与x之间的函数表达式;
(2)该辆汽车以80千米/时的速度从甲地出发开往距离甲地1050千米的B地,为了有效延长汽车使用寿命,厂家建议每次加油时,油箱内剩余油量不低于油箱容量的
,按此建议,求该辆汽车最多行驶多长时间就需再一次加油?此次加油后,剩余路程至少还需再加几次油?
相关试题