【题目】某校要了解学生每天的课外阅读时间情况,随机调查了部分学生,对学生每天的课外阅读时间x(单位:min)进行分组整理,并绘制了如图所示的不完整的统计图表,根据图中提供的信息,解答下列问题:
(1)本次调查共抽取了________名学生;
(2)统计表中a=________,b=________;
(3)将频数分布直方图补充完整;
(4)若全校共有1200名学生,请估计阅读时间不少于45 min的有多少人.
课外阅读时间x/min | 频数/人 | 百分比 |
0≤x<15 | 6 | 10% |
15≤x<30 | 12 | 20% |
30≤x<45 | a | 25% |
45≤x<60 | 18 | b |
60≤x<75 | 9 | 15% |
![]()
参考答案:
【答案】(1)60;(2) 15,30%;(3)见解析;(4)540(人)
【解析】
(1)根据0≤x<15min时间段的频数和频率求出总数即可;
(2)根据题意列出算式a=60×0.25,b=18÷60,求出即可;
(3)根据频数是15画出即可;
(4)根据题意列出算式,再求出即可.
(1)6÷10%=60,即本次调查共抽取了60名学生.
故答案为:60.
(2)a=60×25%=15,b=18÷60×100%=30%.
故答案为:15,30%.
(3)如图所示.
![]()
(4)1200×
=540(人).
答:若全校共有1200名学生,则估计阅读时间不少于45 min的有540人.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AC⊥BC,BD⊥AD,AC 与BD 交于O,AC=BD.
求证:(1)BC=AD;
(2)△OAB是等腰三角形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.

(1)求证:△BDE≌△BCE;
(2)试判断四边形ABED的形状,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】仔细阅读下面的例题:
例题:已知二次三项式x2-4x+m有一个因式是x+3,求另一个因式以及m的值.
解:设另一个因式为x+n,则
x2-4x+m=(x+3)(x+n),
∴x2-4x+m=x2+(n+3)x+3n,
∴
,解得
,∴另一个因式为x-7,m的值为-21.
问题:仿照以上方法解答下面的问题:
已知二次三项式2x2+3x-k有一个因式是2x-5,求另一个因式以及k的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.

(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.
(1)求购买1块电子白板和一台笔记本电脑各需多少元?
(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?
(3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形 ABCD 中,AD∥BC,AB=BC=CD=AD=4,∠A=∠C=60°,连接 BD,将△BCD 绕点 B 旋转,当 BD(即 BD′)与 AD 交于一点 E,BC(即 BC′)同时与 CD 交于一点 F 时,下列结论正确的是( )
①AE=DF;②∠BEF=60°;③∠DEB=∠DFB;④△DEF 的周长的最小值是4+2


A. ①② B. ②③ C. ①②④ D. ①②③④
相关试题