【题目】如图,四边形ABCD,AB∥DC,∠B=55°,∠1=85°,∠2=40°
(1)求∠D的度数;
(2)求证:四边形ABCD是平行四边形.
![]()
参考答案:
【答案】(1)∠D=55°;(2)证明见解析.
【解析】
(1)在△ADC中,根据三角形的内角和为180°即可求得∠D的大小;(2)已知AB∥DC,根据平行线的性质可得∠2+∠ACB+∠B=180°,所以∠ACB=180°﹣∠B﹣∠2=85°,即可得∠ACB=∠1=85°,根据内错角相等两直线平行可得AD∥BC,再由两组对边分别平行的四边形为平行四边形即可得四边形ABCD是平行四边形.
(1∵∠D+∠2+∠3=180°,
∴∠D=180°﹣∠2﹣∠3
=180°﹣40°﹣85°=55°.
(2)证明:∵AB∥DC,
∴∠2+∠ACB+∠B=180°.
∴∠ACB=180°﹣∠B﹣∠2
=180°﹣55°﹣40°=85°.
∵∠ACB=∠1=85°,
∴AD∥BC.
∴四边形ABCD是平行四边形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AB=8,AD=12,过点A、D两点的⊙O与BC边相切于点E,则⊙O的半径为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,甲、乙两渔船同时从港口O出发外出捕鱼,乙沿南偏东30°方向以每小时10海里的速度航行,甲沿南偏西75°方向以每小时10
海里的速度航行,当航行1小时后,甲在A处发现自己的渔具掉在乙船上,于是迅速改变航向和速度,仍以匀速沿南偏东60°方向追赶乙船,正好在B处追上.则甲船追赶乙船的速度为海里/小时?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1 , 还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2017次操作后得到的折痕D2016E2016 , 到BC的距离记为h2017;若h1=1,则h2017的值为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠B>∠C,AD⊥BC,垂足为D,AE平分∠BAC.已知∠B=65°,∠DAE=20°,求∠C的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)阅读理解:
如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.
中线AD的取值范围是 ;
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】当前正值樱桃销售季节,小李用20000元在樱桃基地购进樱桃若干进行销售,由于销售状况良好,他又立即拿出60000元资金购进该种樱桃,但这次的进货价比第一次的进货价提高了20%,购进樱桃数量是第一次的2倍还多200千克.
(1)该种樱桃的第一次进价是每千克多少元?
(2)如果小李按每千克90元的价格出售,当大部分樱桃售出后,余下500千克按售价的7折出售完,小李销售这种樱桃共盈利多少元.
相关试题