【题目】有一枚均匀的正四面体,四个面上分别标有数字1,2,3,4,小红随机地抛掷一次,把着地一面的数字记为x;另有三张背面完全相同,正面上分别写有数字-2,-1,1的卡片,小亮将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y;然后他们计算出S=x+y的值.
(1)用树状图或列表法表示出S的所有可能情况;
(2)分别求出当S=0和S<2时的概率.
参考答案:
【答案】(1)答案见解析;(2)
, ![]()
【解析】试题分析:列举出符合题意的各种情况的个数,再根据概率公式解答即可.
解:(1)画树状图,
![]()
(2)由图可知,所有可能出现的结果有12种,其中S=0的有2种,S<2的有5种,
∴P(S=0)=
,
P(S<2)=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在平面直角坐标系中,有若干个整数点,其顺序按图中箭头方向排列,如(1,0),(2,0)(2,1),(3,2),(3,1)(3,0),……,根据这个规律探索可得,第102个点的坐标为______________;

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:(﹣x)3x5+(2x4)2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列计算正确的是( )
A.3a+4b=7ab
B.7a-3a=4
C.3a+a=3a2
D.3a2b-4a2b=-a2b -
科目: 来源: 题型:
查看答案和解析>>【题目】某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.
如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知点A(-2,0),B(0,3),O 为原点.
(1)求三角线 AOB 的面积;
(2)将线段 AB 沿 x 轴向右平移4个单位,得线段A′B′,x轴上有一点C满足三角形A′B′C的面积为 9 ,求点C的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知2x﹣y=4.
(1)用含x的代数式表示y的形式为 .
(2)若y≤3,求x的取值范围.
相关试题