【题目】在平面直角坐标系xOy中,已知点P(3,0),⊙P是以点P为圆心,2为半径的圆,若一次函数y=kx+b的图象过点A(﹣1,0)且与⊙P相切,则k+b的值为 .
参考答案:
【答案】± ![]()
【解析】解:根据题意画出相应的图形,如图所示: ![]()
当直线AB与圆P相切,设切点为B点,且切点B在第一象限时,
连接PB,由AB为圆P的切线,得到BP⊥AB,
又∵A(﹣1,0),P(3,0),
∴OA=1,OP=3,又BP=2,
则AP=OA+OP=1+3=4,
在Rt△ABP中,BP=
AP,
可得出∠BAP=30°,
在Rt△ACO中,OA=1,∠BAP=30°,
∴tan∠BAP=tan30°=
=OC,
∴OC=
,即C(0,
),
设直线AC的解析式为y=kx+b,将A和C的坐标代入得:
,
解得:
,
∴k+b=
;
当直线AB与圆P相切时,切点B在第四象限时,同理得到k=b=﹣
,
可得k+b=﹣
,
综上,k+b=±
.
所以答案是:±
.
【考点精析】关于本题考查的确定一次函数的表达式和切线的性质定理,需要了解确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法;切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读理解 如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.
探究发现
(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?(填“是”或“不是”).
(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为 应用提升
(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角. 请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角. -
科目: 来源: 题型:
查看答案和解析>>【题目】小明设计了一个问题,分两步完成:
(1)已知关于x的一元一次方程
,请画出数轴,并在数轴上标注a与
对应的点,分别记作A,B;(2)在第1问的条件下,在数轴上另有一点C对应的数为y,C与A的距离是C与B的距离的5倍,且C在表示5的点的左侧,求y的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知a、b、c、d都是正实数,且
<
,给出下列四个不等式: ①
<
;②
<
;③
;④
<
其中不等式正确的是()
A.①③
B.①④
C.②④
D.②③ -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知反比例函数y=
(k1>0),y=
(k2<0).点A在y轴的正半轴上,过点A作直线BC∥x轴,且分别与两个反比例函数的图象交于点B和C,连接OC、OB.若△BOC的面积为
,AC:AB=2:3,则k1= , k2= . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】解方程组和不等式组:
(1)
(2)
. -
科目: 来源: 题型:
查看答案和解析>>【题目】为了迎接党的十八大的召开,某校组织了以“党在我心中”为主题的征文比赛,每位学生只能参加一次比赛,比赛成绩只分A、B、C、D四个阶段.随机抽取该校部分学生的征文比赛成绩进行统计分析,并绘制了如下的统计图表: 根据表中的信息,解决下列问题:
成绩等级
A
B
C
D
人数
60
x
y
10
占抽查学生总数的百分比
30%
50%
15%
m
(1)本次抽查的学生共有名;
(2)表中x、y和m所表示的数分别为:X= , y= , m=;
(3)请补全条形统计图.
相关试题