【题目】小明的作业本上有四道利用不等式的性质,将不等式化为x>a或x<a的作业题:①由x+7>8解得x>1;②由x<2x+3解得x<3;③由3x-1>x+7解得x>4;④由-3x>-6解得x<-2.其中正确的有( )
A. 1题 B. 2题
C. 3题 D. 4题
参考答案:
【答案】B
【解析】①不等式的两边都减7,得x>1,故①正确;
②不等式两边都减(x+3),得x>-3,故②错误;
③不等式的两边都加(1-x),得2x>8,不等式的两边都除以2,得x>4,故③正确;
④不等式的两边都除以-3,得x<2,故④错误,
所以正确的有2题,
故选B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本题满分10分)
一汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金
x(元)与每月租出的车辆数(y)有如下关系:
x
4500
4000
3800
3200
y
70
80
84
96
(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式.
(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元. 每辆车的月租金定为多少元时,才能使公司获得最大月收益?请求出公司的最大月收益是多少元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,经过点A(-4,4)的抛物线y=ax2+bx+c与x轴相交于点B(-3,0)及原点O.
(1)求抛物线的解析式;
(2)如图1,过点A作AH⊥x轴,垂足为H,平行于y轴的直线交线段AO于点Q,交抛物线于点P,当四边形AHPQ为平行四边形时,求∠AOP的度数;
(3)如图2,若点C在抛物线上,且∠CAO=∠BAO,试探究:在(2)的条件下,是否存在点G,使得△GOP∽△COA?若存在,请求出所有满足条件的点G坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】一次质量检测,甲组成绩的方差为S甲2=102.5,乙组成的方差为S乙2=98.03,则成绩较稳定的小组是_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,点P的横坐标是﹣3,且点P到x轴的距离为5,则点P的坐标是( )
A.(5,﹣3)或(﹣5,﹣3)
B.(﹣3,5)或(﹣3,﹣5)
C.(﹣3,5)
D.(﹣3,﹣5) -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系
中,对于点
,我们把点
叫做点
伴随点.已知点
的伴随点为
,点
的伴随点为
,点
的伴随点为
,…,这样依次得到点
,
,
,…,
,….若点
的坐标为(2,4),点
的坐标为 ( )
A.(-3,3)
B.(-2,-2)
C.(3,-1)
D.(2,4) -
科目: 来源: 题型:
查看答案和解析>>【题目】我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.运用上述知识,解决下列问题:
(1)如果(a-2)
+b+3=0,其中a、b为有理数,那么a=______________;(2)如果(2+
)a-(1-
)b=5,其中a、b为有理数,求a+2b的值.
相关试题