【题目】观察下列等式: 第一个等式:
第二个等式:
第三个等式:
第四个等式:
按上述规律,回答下列问题:
(1)请写出第六个等式:a6==;
(2)用含n的代数式表示第n个等式:an==;
(3)a1+a2+a3+a4+a5+a6=(得出最简结果);
(4)计算:a1+a2+…+an .
参考答案:
【答案】
(1)
;
﹣ ![]()
(2)
;
﹣ ![]()
(3)![]()
(4)解:原式=
﹣
+
﹣
+…+
﹣
=
﹣ ![]()
= ![]()
【解析】解:(1.)由题意知,a6=
=
﹣
, 所以答案是:
,
﹣
;
(2.)an=
=
﹣
,
所以答案是:
,
﹣
;
(3.)原式=
﹣
+
﹣
+
﹣
+
﹣
+
﹣
+
﹣
=
﹣
=
,
所以答案是:
;
【考点精析】通过灵活运用数与式的规律,掌握先从图形上寻找规律,然后验证规律,应用规律,即数形结合寻找规律即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店购买一批单价为20元的日用品,如果以单价30元销售,那么半月内可以售出400件.据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高一元,销售量相应减少20件.如何提高销售价,才能在半月内获得最大利润?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,AD∥BC,CM是∠BCD的平分线,且CM⊥AB,M为垂足,AM=
AB.若四边形ABCD的面积为
,则四边形AMCD的面积是 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线l1∥l2 , l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=4
,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2 , 且PA+AB+BQ最小,此时PA+BQ= . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在⊙O中,直径CD垂直于不过圆心O的弦AB,垂足为点N,连接AC,点E在AB上,且AE=CE

(1)求证:AC2=AEAB;
(2)过点B作⊙O的切线交EC的延长线于点P,试判断PB与PE是否相等,并说明理由;
(3)设⊙O半径为4,点N为OC中点,点Q在⊙O上,求线段PQ的最小值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.

(1)求抛物线的解析式;
(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;
(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC. 求证:△BDE是等腰三角形.

相关试题