【题目】如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
解答下列问题:
(1)如果AB=AC,∠BAC=90,当点D在线段BC上时(与点B不重合),如图2,线段CF,BD所在直线位置关系为 ,数量关系为 .
(2)如果AB=AC,∠BAC=90,当点D在线段BC的延长线时,如图3,(1)中的结论是否仍然成立,并说明理由。
(3)如果AB=AC,∠BAC是钝角,点D在线段BC上,当∠ABC满足什么条件时,CF⊥BC(点C、F不重合)画出图形,并说明理由。
![]()
参考答案:
【答案】(1)CF与BD位置关系是垂直,数量关系是相等(2)当点D在BC的延长线上时①的结论仍成立 (3)当∠ACB=45
时
【解析】分析: (1)①证明△BAD≌△CAF,可得:BD=CF,∠B=∠ACF=45°,则∠BCF=∠ACB+∠ACF=90°,所以BD与CF相等且垂直;
②①的结论仍成立,同理证明△DAB≌△FAC,可得结论:垂直且相等;
(2)当∠ACB满足45°时,CF⊥BC;如图4,作辅助线,证明△QAD≌△CAF,即可得出结论.
详解:
(1)CF与BD位置关系是垂直,数量关系是相等
(2)当点D在BC的延长线上时①的结论仍成立
由正方形ADEF得AD=AF,∠DAF=90°
![]()
∵∠BAC=90v,
∴∠DAF=∠BAC,
∴∠DAB=∠FAC
又∵AB=AC,
∴△DAB≌△FAC,
∴CF=BD
∠ACF=∠ABD
∵∠BAC=90°,AB=AC
∴∠ABC=45°
![]()
∴∠ACF=45°
∴∠BCF=∠ACB+∠ACF=90°
即CF⊥BD.
(3)当∠ACB=45°时,CF⊥BD,理由:
过点A作AG⊥AC交BC于点G
∴AC=AG
可证得:△GAD≌△CAF
∴∠ACF=∠AGD=45°
∠BCF=∠ACB+∠ACF=90°
即CF⊥BD.
点睛: 本题是四边形的综合题,考查了正方形、等腰直角三角形、全等三角形的性质和判定,本题的三个结论都是证明三角形全等得出,所以利用SAS证明三角形全等是本题的关键;第(2)问,恰当地作辅助线,构建等腰直角三角形,同样也是构建两个三角形全等得出结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题中正确的有( )
①如果|a|=|b|,那么a=b;
②两条直线被第三条直线所截,同位角相等;
③如果三条直线两两相交,那么可把一个平面最多分成6个部分;
④不是对顶角的角可以相等
A.1个B.2个C.3个D.4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】某种商品的进价为800元,出售是标价为1200元,后来由于该商品积压,商品准备打折销售,但是保证利润率不低于5%,则至少可打( )
A.6折B.7折C.8折D.9折
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.

(1)求点C的坐标和直线l1的解析式;
(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;
(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到1000个小三角形,则需要操作的次数是( )

A.332
B.333
C.334
D.335 -
科目: 来源: 题型:
查看答案和解析>>【题目】弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为( )

A. y=x+12 B. y=0.5x+12
C. y=0.5x+10 D. y=x+10.5
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点A(﹣1,﹣2),点B(1,4)
(1)试建立相应的平面直角坐标系;
(2)描出线段AB的中点C,并写出其坐标;
(3)将线段AB沿水平方向向右平移3个单位长度得到线段A1B1,写出线段A1B1两个端点及线段中点C1的坐标.
相关试题