【题目】如图,四边形ABCD是正方形,△ADF绕着点A顺时旋转90°得到△ABE,若AF=4,AB=7.
(1)求DE的长度;
(2)指出BE与DF的关系如何?并说明由.
![]()
参考答案:
【答案】(1)3;(2)BE=DF,BE⊥DF.
【解析】
(1)根据旋转的性质可得AE=AF,AD=AB,然后根据DE=AD﹣AE计算即可得解;
(2)根据旋转可得△ABE和△ADF全等,根据全等三角形对应边相等可得BE=DF,全等三角形对应角相等可得∠ABE=∠ADF,然后求出∠ABE+∠F=90°,判断出BE⊥DF.
解:(1)∵△ADF按顺时针方向旋转一定角度后得到△ABE,
∴AE=AF=4,AD=AB=7,
∴DE=AD﹣AE=7﹣4=3;
(2)BE、DF的关系为:BE=DF,BE⊥DF.理由如下:
∵△ADF按顺时针方向旋转一定角度后得到△ABE,
∴△ABE≌△ADF,
∴BE=DF,∠ABE=∠ADF,
∵∠ADF+∠F=180°﹣90°=90°,
∴∠ABE+∠F=90°,
∴BE⊥DF,
∴BE、DF的关系为:BE=DF,BE⊥DF.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示:已知∠ABC=120°,作等边△ACD,将△ACD旋转60°,得到△CDE,AB=3,BC=2,求BD和∠ABD.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知在△ABC中,∠BAC的平分线与线段BC的垂直平分线PQ相交于点P,过点P分别作PN垂直于AB于点N,PM垂直于AC于点M,BN和CM有什么数量关系?请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC绕原点逆时针旋转90°,得到△A1B1C1,将△A1B1C1向右平移6个单位,再向上平移2个单位得到△A2B2C2.
(1)画出△A1B1C1和△A2B2C2;
(2)△ABC经旋转、平移后点A的对应点分别为A1、A2,请写出点A1、A2的坐标;
(3)P(a,b)是△ABC的边AC上一点,△ABC经旋转、平移后点P的对应点分别为P1,P2,请写出点P1、P2的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】将两块三角板按图1摆放,固定三角板ABC,将三角板CDE绕点C按顺时针方向旋转,其中∠A=45°,∠D=30°,设旋转角为α,(0°<a<80°)
(1)当DE∥AC时(如图2),求α的值;
(2)当DE∥AB时(如图3).AB与CE相交于点F,求α的值;
(3)当0°<α<90°时,连结AE(如图4),直线AB与DE相交于点F,试探究∠1+∠2+∠3的大小是否改变?若不改变,请求出此定值,若改变,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为弘扬中华传统文化,某校举办了学生“国学经典大赛”.比赛项目为:
.唐诗;
.宋词;
.论语;
.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?
(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则小红和小明都没有抽到“论语”的概率是多少?请用画树状图或列表的方法进行说明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在由边长均为1的小正方形组成的网格中,△ABC和△DEF的顶点都在格点(网格线的交点)上,请按要求完成下列各题.
(1)试证明△ABC是直角三角形;
(2)判断△ABC和△DEF是否相似,并说明理由.

相关试题