【题目】已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.
![]()
(1)如图1,求证:△AFB≌△ADC;
(2)请判断图1中四边形BCEF的形状,并说明理由;
(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.
参考答案:
【答案】(1)见解析;(2)BCEF是平行四边形;(3)成立
【解析】试题分析:(1)利用有两条边对应相等并且夹角相等的两个三角形全等即可证明△AFB≌△ADC;
(2)四边形BCEF是平行四边形,因为△AFB≌△ADC,所以可得∠ABF=∠C=60°,进而证明∠ABF=∠BAC,则可得到FB∥AC,又BC∥EF,所以四边形BCEF是平行四边形;
(3)易证AF=AD,AB=AC,∠FAD=∠BAC=60°,可得∠FAB=∠DAC,即可证明△AFB≌△ADC;根据△AFB≌△ADC可得∠ABF=∠ADC,进而求得∠AFB=∠EAF,求得BF∥AE,又BC∥EF,从而证得四边形BCEF是平行四边形.
证明:(1)∵△ABC和△ADF都是等边三角形,
∴AF=AD,AB=AC,∠FAD=∠BAC=60°,
又∵∠FAB=∠FAD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,
∴∠FAB=∠DAC,
在△AFB和△ADC中,
,
∴△AFB≌△ADC(SAS);
(2)由①得△AFB≌△ADC,
∴∠ABF=∠C=60°.
又∵∠BAC=∠C=60°,
∴∠ABF=∠BAC,
∴FB∥AC,
又∵BC∥EF,
∴四边形BCEF是平行四边形;
(3)成立,理由如下:
∵△ABC和△ADE都是等边三角形,
∴AF=AD,AB=AC,∠FAD=∠BAC=60°,
又∵∠FAB=∠FAD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,
∴∠FAB=∠DAC,
在△AFB和△ADC中,
,
∴△AFB≌△ADC(SAS);
∴∠AFB=∠ADC.
又∵∠ADC+∠DAC=60°,∠EAF+∠DAC=60°,
∴∠ADC=∠EAF,
∴∠AFB=∠EAF,
∴BF∥AE,
又∵BC∥EF,
∴四边形BCEF是平行四边形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】骆驼被称为“沙漠之舟”,它的体温是随时间的变化而变化的,在这一问题中,因变量是( )
A. 沙漠 B. 骆驼 C. 时间 D. 体温
-
科目: 来源: 题型:
查看答案和解析>>【题目】一种新型病毒的直径约为0.000043毫米,用科学记数法表示为( )毫米.
A. 0.43×10-4 B. 0.43×10-5 C. 4.3×10-5 D. 4.3×10-8
-
科目: 来源: 题型:
查看答案和解析>>【题目】(6分)如图是甲、乙两人同一地点出发后,路程随时间变化的图象.

(1)此变化过程中,__________是自变量,_________是因变量.
(2)甲的速度是 ________千米/时,乙的速度是________千米/时
(3)9时甲在乙的________(前面、后面、相同位置)
(4)6时表示____________________________
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)

-
科目: 来源: 题型:
查看答案和解析>>【题目】某事件经过500000000次试验,出现的频率是0.3,它的概率估计值是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】x2+ax+b分解因式的结果是(x﹣1)(x+2),则方程x2+ax+b=0的二根分别是什么?
相关试题