【题目】如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.![]()
(1)观察猜想
图1中,线段PM与PN的数量关系是 , 位置关系是;
(2)探究证明
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;![]()
(3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
参考答案:
【答案】
(1)PM=PN;PM⊥PN
(2)
解:由旋转知,∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,BD=CE,
同(1)的方法,利用三角形的中位线得,PN=
BD,PM=
CE,
∴PM=PN,
∴△PMN是等腰三角形,
同(1)的方法得,PM∥CE,
∴∠DPM=∠DCE,
同(1)的方法得,PN∥BD,
∴∠PNC=∠DBC,
∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,
∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC
=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC
=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,
∵∠BAC=90°,
∴∠ACB+∠ABC=90°,
∴∠MPN=90°,
∴△PMN是等腰直角三角形
(3)
解:如图2,同(2)的方法得,△PMN是等腰直角三角形,
∴MN最大时,△PMN的面积最大,
∴DE∥BC且DE在顶点A上面,
∴MN最大=AM+AN,
连接AM,AN,
在△ADE中,AD=AE=4,∠DAE=90°,
∴AM=2
,
在Rt△ABC中,AB=AC=10,AN=5
,
∴MN最大=2
+5
=7
,
∴S△PMN最大=
PM2=
×
MN2=
×(7
)2=
.
![]()
【解析】解:(1)∵点P,N是BC,CD的中点,
∴PN∥BD,PN=
BD,
∵点P,M是CD,DE的中点,
∴PM∥CE,PM=
CE,
∵AB=AC,AD=AE,
∴BD=CE,
∴PM=PN,
∵PN∥BD,
∴∠DPN=∠ADC,
∵PM∥CE,
∴∠DPM=∠DCA,
∵∠BAC=90°,
∴∠ADC+∠ACD=90°,
∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,
∴PM⊥PN,
故答案为:PM=PN,PM⊥PN,
(1)利用三角形的中位线得出PM=
CE,PN=
BD,进而判断出BD=CE,即可得出结论,另为利用三角形的中位线得出平行线即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=
BD,PN=
BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A(1-
,1+
)在双曲线
(x<0)上(1) 求k的值
(2) 在y轴上取点B(0,1),问双曲线上是否存在点D,使得以AB、AD为斜边的平行四边形ACBD的顶点C在x轴的负半轴上?若存在,求出点D的坐标;若不存在,请说明理由

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】算术平方根等于它本身的数是________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】菱形具有而平行四边形不具有的性质是( )
A. 对角线互相平分 B. 两组对边分别相等 C. 对角线互相垂直 D. 相邻两角互补
-
科目: 来源: 题型:
查看答案和解析>>【题目】在□ABCD中,已知AB、BC、CD三条边长度分别为(x + 3)cm、(x - 4)cm、16 cm,则AD = ____________。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将线段AB绕点O顺时针旋转90°得到线段A'B',那么点A(-2,5)的对应点A'的坐标是.

相关试题