【题目】如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②PF=PA;③AH+BD=AB;④S四边形ABDE=
S△ABP,其中正确的是( )
![]()
A.①③B.①②④C.①②③D.②③
参考答案:
【答案】C
【解析】
根据三角形全等的判定和性质以及三角形内角和定理逐条分析判断.
在△ABC中,AD、BE分别平分∠BAC、∠ABC,
∵∠ACB=90°,
∴∠A+∠B=90°,
又∵AD、BE分别平分∠BAC、∠ABC,
∴∠BAD+∠ABE=
(∠A+∠B)=45°,
∴∠APB=135°,故①正确.
∴∠BPD=45°,
又∵PF⊥AD,
∴∠FPB=90°+45°=135°,
∴∠APB=∠FPB,
又∵∠ABP=∠FBP,
BP=BP,
∴△ABP≌△FBP,
∴∠BAP=∠BFP,AB=FB,PA=PF,故②正确.
在△APH和△FPD中,
∵∠APH=∠FPD=90°,
∠PAH=∠BAP=∠BFP,
PA=PF,
∴△APH≌△FPD,
∴AH=FD,
又∵AB=FB,
∴AB=FD+BD=AH+BD.故③正确.
连接HD,ED.
∵△ABP≌△FBP,△APH≌△FPD,
∴S△APB=S△FPB,S△APH=S△FPD,PH=PD,
∵∠HPD=90°,
∴∠HDP=∠DHP=45°=∠BPD,
∴HD∥EP,
∴S△EPH=S△EPD,
∵S四边形ABDE=S△ABP+S△AEP+S△EPD+S△PBD
=S△ABP+(S△AEP+S△EPH)+S△PBD
=S△ABP+S△APH+S△PBD
=S△ABP+S△FPD+S△PBD
=S△ABP+S△FBP
=2S△ABP,故④不正确.
故选:C.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲乙两人在玩转盘游戏时,把转盘A、B分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某一数字,否则重转.
(1)请用树状图或列表法列出所有可能的结果;
(2)若指针所指的两个数字都是方程x2-5x+6=0的解时,则甲获胜;若指针所指的两个数字都不是方程x2-5x+6=0的解时,则乙获胜,问他们两人谁获胜的概率大?请分析说明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图①所示,乙绘制的如图②所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误.
(1)写出乙同学在数据整理或绘图过程中的错误(写出一个即可);

(2)甲同学在数据整理后若用扇形统计图表示,则159.5﹣164.5这一部分所对应的扇形圆心角的度数为 ;
(3)该班学生的身高数据的中位数是 ;
(4)假设身高在169.5﹣174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形.计算(a+b)n的结果中的各项系数依次对应杨辉三角的第(n+1)行中的每一项,如,(a+b)3=a3+3a2b+3ab2+b3,若t是(a﹣b)2019展开式中ab2018的系数,则t的值为( )

A.2018B.﹣2018C.2019D.﹣2019
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,∠A+∠C=180°,E、F分别在BC、CD上,且AB=BE,AD=DF,M为EF的中点,DM=3,BM=4,则五边形ABEFD的面积是_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】小明和小红玩抛硬币游戏,连续抛两次.小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢.”小红赢的概率是__________,据此判断该游戏__________(填“公平”或“不公平”).
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球
(1)请画树状图,列举所有可能出现的结果
(2)请直接写出事件“取出至少一个红球”的概率.
相关试题