【题目】不等式组
的解集在数轴上表示为
A.![]()
B.![]()
C. ![]()
D.![]()
参考答案:
【答案】C
【解析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。因此,![]()
![]()
![]()
![]()
。
不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个。在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示。因此,
的解集
在数轴上表示为C。故选C。
【考点精析】根据题目的已知条件,利用不等式的解集在数轴上的表示和一元一次不等式组的解法的相关知识可以得到问题的答案,需要掌握不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向.规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈;解法:①分别求出这个不等式组中各个不等式的解集;②利用数轴表示出各个不等式的解集;③找出公共部分;④用不等式表示出这个不等式组的解集.如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 ).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动,M,N分别是AD,CD的中点,连接MN,设点D运动的时间为t.
(1)判断MN与AC的位置关系;
(2)求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;
(3)若△DMN是等腰三角形,求t的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(本题8分)如图,在△ABC中,D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.
(1)求∠AFC的度数;
(2)求∠EDF的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】有限小数和无限循环小数统称数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,对角线AC、BD相交于点O,点E、F分别是边AD、AB上的点,连结OE、OF、EF.若AB=7,BC=5
,∠DAB=45°,则△OEF周长的最小值是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】(8分)如图,在△ABC中,∠C=60°,∠A=40°.

(1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);
(2)求证:BD平分∠CBA.
-
科目: 来源: 题型:
查看答案和解析>>【题目】不等式组
的解集,在数轴上表示正确的是( )
A.
B.
C.
D.
相关试题