18.(本小题满分14分)

解:(1)(法一)∵平面平面,AE⊥EF,∴AE⊥面平面,AE⊥EF,AE⊥BE,又BE⊥EF,故可如图建立空间坐标系E-xyz。…………………………………………… 1分

则A(0,0,2),B(2,0,0),G(2,2,0),D(0,2,2),E(0,0,0)…………2分

 

 

 

 

 

 

 

 

(-2,2,2),(2,2,0)…………………………………………………3分

(-2,2,2)(2,2,0)=0,∴ ……………………………4分

(法二)作DH⊥EF于H,连BH,GH,……………1分

由平面平面知:DH⊥平面EBCF,

而EG平面EBCF,故EG⊥DH。

又四边形BGHE为正方形,∴EG⊥BH,

BHDH=H,故EG⊥平面DBH,………………… 3分

而BD平面DBH,∴ EG⊥BD。………………… 4分

(或者直接利用三垂线定理得出结果)

(2)∵AD∥面BFC,

所以 VA-BFC==4(4-x)x

………………………………………………………………………7分

即时有最大值为。…………………………………………………………8分

(3)(法一)设平面DBF的法向量为,∵AE=2, B(2,0,0),D(0,2,2),

_

E

则 ,

即,

取x=3,则y=2,z=1,∴ 

 面BCF的一个法向量为         ……………………………12分

则cos<>=  …………………………………………13分

由于所求二面角D-BF-C的平面角为钝角,所以此二面角的余弦值为- ………………………………………………………………………………14分

(法二)作DH⊥EF于H,作HM⊥BF,连DM。

由三垂线定理知 BF⊥DM,∴∠DMH是二面角D-BF-C的平面角的补角。             ………………………………………………………………9分

由△HMF∽△EBF,知,而HF=1,BE=2,,∴HM=。

又DH=2,

∴在Rt△HMD中,tan∠DMH=-,

因∠DMH为锐角,∴cos∠DMH=,  ………………………………13分

而∠DMH是二面角D-BF-C的平面角的补角,

故二面角D-BF-C的余弦值为-。     ………………………………14分

  • 答案
关闭