=8×0.04+10×0.2+12×0.37+14×0.3+16×0.09=12.4(千元)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 12分

 

⑴证明:平面和平面互相垂直;

⑵证明:截面和截面面积之和是

定值,并求出这个值;

⑶若与平面所成的角为,求

与平面所成角的正弦值.

说明:本小题主要考查空间中的线面关系,面面关系,解三角形等基础知识,考查空间想象能力与逻辑思维能力。满分12分.

解法一:

(Ⅰ)证明:在正方体中,,,又由已知可得

所以,,

所以平面.

所以平面和平面互相垂直.・・・・・・・・・・・・・・・・・・・・・・・・ 4分

(Ⅱ)证明:由(Ⅰ)知

,又截面PQEF和截面PQGH都是矩形,且PQ=1,所以截面PQEF和截面PQGH面积之和是

,是定值.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 8分

(III)解:连结BC′交EQ于点M

因为,,

所以平面和平面PQGH互相平行,因此与平面PQGH所成角与与平面所成角相等.

与(Ⅰ)同理可证EQ⊥平面PQGH,可知EM⊥平面,因此EM的比值就是所求的正弦值.

PF于点N连结EN,由知

因为⊥平面PQEF又已知与平面PQEF成角,

所以,即

解得,可知E为BC中点.

所以EM=,又,

与平面PQCH所成角的正弦值为.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 12分

解法二:

D为原点,射线DA,DC,DD′分别为x,y,z轴的正半轴建立如图的空间直角坐标系D-xyz由已知得,故

,,,

,,.

(Ⅰ)证明:在所建立的坐标系中,可得

因为,所以是平面PQEF的法向量.

因为,所以是平面PQGH的法向量.

因为,所以,

所以平面PQEF和平面PQGH互相垂直.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 4分

(Ⅱ)证明:因为,所以,又,所以PQEF为矩形,同理PQGH为矩形.

在所建立的坐标系中可求得,,

所以,又,

所以截面PQEF和截面PQGH面积之和为,是定值.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 8分

(Ⅲ)解:由已知得与成角,又可得

   ,

即,解得.

所以,又,所以与平面PQGH所成角的正弦值为

.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 12分

  • 答案
关闭