例5.(2004年天津卷理22)椭圆的中心是原点O,它的短轴长为,相应于焦点F(c,0)()的准线与x轴相交于点A,|OF|=2|FA|,过点A的直线与椭圆相交于P、Q两点.

  (1)求椭圆的方程及离心率;

(2)若,求直线PQ的方程;

(3)设(),过点P且平行于准线的直线与椭圆相交于另一点M,证明.

分析:本小题主要考查椭圆的标准方程和几何性质,直线方程,平面向量的计算,曲线和方程的关系等解析几何的基本思想方法和综合解题能力.

(1)解:由题意,可设椭圆的方程为.

  由已知得解得

所以椭圆的方程为,离心率.

(2)解:由(1)可得A(3,0).

设直线PQ的方程为.由方程组

       得

依题意,得.

设,则,   ① .    ②

由直线PQ的方程得.于是

.    ③

∵,∴.    ④

由①②③④得,从而.

所以直线PQ的方程为或

(2)证明:.由已知得方程组

  注意,解得

因,故

.

而,所以.

由于向量具有几何形式和代数形式的“双重身份”,使向量与解析几何之间有着密切联系,而新课程高考则突出了对向量与解析几何结合考查,这就要求我们在平时的解析几何教学与复习中,应抓住时机,有效地渗透向量有关知识,树立应用向量的意识。应充分挖掘课本素材,在教学中从推导有关公式、定理,例题讲解入手,让学生去品位、去领悟,在公式、定理的探索、形成中逐渐体会向量的工具性,逐渐形成应用向量的意识,在教学中还应注重引导学生善于运用一些问题的结论,加以引申,使之成为解题方法,体会向量解题的优越性,在教学中还应注重引导学生善于运用向量方法解题,逐步树立运用向量知识解题的意识。

  • 答案
关闭