例9.已知抛物线与直线y=x+2相交于A、B两点,过A、B两点的切线分别为和。
(1)求A、B两点的坐标; (2)求直线与的夹角。
分析:理解导数的几何意义是解决本例的关键。
解 (1)由方程组
解得 A(-2,0),B(3,5)
(2)由y′=2x,则,。设两直线的夹角为θ,根据两直线的夹角公式,
所以
说明:本例中直线与抛物线的交点处的切线,就是该点处抛物线的切线。注意两条直线的夹角公式有绝对值符号。
- 答案
例9.已知抛物线与直线y=x+2相交于A、B两点,过A、B两点的切线分别为和。
(1)求A、B两点的坐标; (2)求直线与的夹角。
分析:理解导数的几何意义是解决本例的关键。
解 (1)由方程组
解得 A(-2,0),B(3,5)
(2)由y′=2x,则,。设两直线的夹角为θ,根据两直线的夹角公式,
所以
说明:本例中直线与抛物线的交点处的切线,就是该点处抛物线的切线。注意两条直线的夹角公式有绝对值符号。