4.与导数相综合

近几年的新课程卷也十分注意与导数的综合,如03年的天津文科试题、04年的湖南文理科试题,都分别与向量综合.

例10(04年湖南文理科试题)如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A,B两点,点Q是点P关于原点的对称点。

(I)设点P分有向线段所成的比为,证明: 

(II)设直线AB的方程是x-2y+12=0,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.

    解:(Ⅰ)依题意,可设直线AB的方程为 代入抛物线方程得     ①

设A、B两点的坐标分别是 、、x2是方程①的两根.

所以     

由点P(0,m)分有向线段所成的比为,得

又点Q是点P关于原点的对称点,故点Q的坐标是(0,-m),从而.

               

               

所以 

(Ⅱ)由 得点A、B的坐标分别是(6,9)、(-4,4).

由   得 所以抛物线 在点A处切线的斜率为

设圆C的方程是则

解之得

所以圆C的方程是  即 

  • 答案
关闭