例3.在的展开式中x的系数为( ).
(A)160 (B)240 (C)360 (D)800
分析与解:本题要求展开式中x的系数,而我们只学习过多项式乘法法则及二项展开式定理,因此,就要把对x系数的计算用上述两种思路进行转化:
思路1:直接运用多项式乘法法则和两个基本原理求解,则展开式是一个关于x的10次多项式, =(x2+3x+2) (x2+3x+2) (x2+3x+2) (x2+3x+2) (x2+3x+2),它的展开式中的一次项只能从5个括号中的一个中选取一次项3x并在其余四个括号中均选 择常数项2相乘得到,故为・(3x)・・24=5×3×16x=240x,所以应选(B).
思路2 利用二项式定理把三项式乘幂转化为二项式定理再进行计算,∵x2+3x+2=x2+ (3x+2)=(x2+2)+3x=(x2+3x)+2=(x+1)(x+2)=(1+x)(2+x),∴这条思路下又有四种不同的化归与转化方法.①如利用x2+3x+2=x2+(3x+2)转化,可以发现只有(3x+2)5中会有x项,即(3x)・24=240x,故选(B);②如利用x2+3x+2= (x2+2)+3x进行转化,则只 (x2+2) 4・3x中含有x一次项,即・3x・C44・24=240x;③如利用x2+3x+2=(x2+3x)+2进行转化,就只有・(x2+3x)・24中会有x项,即240x;④如选择x2+3x+2=(1+x)(2+x)进行转化,=×展开式中的一次项x只能由(1+x)5中的一次项乘以(2+x)5展开式中的常数项加上(2+x)5展开式中的一次项乘以(1+x)5展开式中的常数项后得到,即为x・25+•24•x••15=160x+80x=240x,故选(B).
评注:化归与转化的意识帮我们把未知转化为已知。
- 答案