22.(本小题满分14分)
设椭圆的左右焦点分别为,离心率,点到右准线为的距离为
(Ⅰ)求的值;
(Ⅱ)设是上的两个动点,,
证明:当取最小值时,
【解】:因为,到的距离,所以由题设得
解得
由,得
(Ⅱ)由得,的方程为
故可设
由知知
得,所以
当且仅当时,上式取等号,此时
所以,
【点评】:此题重点考察椭圆基本量间的关系,进而求椭圆待定常数,考察向量与椭圆的综合应用;
【突破】:熟悉椭圆各基本量间的关系,数形结合,熟练进行向量的坐标运算,设而不求消元的思想在圆锥曲线问题中应灵活应用。
四川省内江市隆昌县黄家中学 程亮 编辑
- 答案