18.(本小题满分12分)

一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回.

(Ⅰ)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率;

(Ⅱ)如果摸出红球,则停止摸球,求摸球次数不超过3次的概率.

解:(Ⅰ)从袋中依次摸出2个球共有种结果,第一次摸出黑球、第二次摸出白球有 种结果,则所求概率 .

(Ⅱ)第一次摸出红球的概率为,第二次摸出红球的概率为,第三次摸出红球的概率为,则摸球次数不超过3次的概率为 .

 

19.(本小题满分12分)

三棱锥被平行于底面的平面所截得的几何体如图所示,截面为,,平面,,,,,.

(Ⅰ)证明:平面平面;

(Ⅱ)求二面角的大小.

解:解法一:(Ⅰ)平面平面,

.在中,,

,,又,

,,即.

又,平面,

平面,平面平面.

(Ⅱ)如图,作交于点,连接,

由已知得平面.

是在面内的射影.

由三垂线定理知,

为二面角的平面角.

过作交于点,

则,,.

在中,.

在中,.,

即二面角为.

解法二:(Ⅰ)如图,建立空间直角坐标系,

则,

,.

点坐标为.

,.

,,,,又,

平面,又平面,平面平面.

(Ⅱ)平面,取为平面的法向量,

设平面的法向量为,则.

,如图,可取,则,

即二面角为.

  • 答案
关闭