20.(本小题满分12分)

在数列,是各项均为正数的等比数列,设.

(Ⅰ)数列是否为等比数列?证明你的结论;

(Ⅱ)设数列,的前项和分别为,.若,,

求数列的前项和.

本小题主要考查等差数列,等比数列,对数等基础知识,

考查综合运用数学知识解决问题的能力.满分12分.

解:(Ⅰ)是等比数列.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 2分

 

 

证明:设的公比为,的公比为,则

,故为等比数列.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 5分

(Ⅱ)数列和分别是公差为和的等差数列.

由条件得,即

.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 7分

故对,,…,

.于是

将代入得,,.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 10分

从而有.所以数列的前项和为

.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 12分

 

 

21.(本小题满分12分)

在平面直角坐标系中,点P到两点,的距离之和等于4,

设点P的轨迹为

(Ⅰ)写出C的方程;

(Ⅱ)设直线C交于AB两点.k为何值时?

此时的值是多少?

本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,

考查综合运用解析几何知识解决问题的能力.满分12分.

 

 

 

解:

(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦点,

长半轴为2的椭圆.它的短半轴,

故曲线C的方程为.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 4分

(Ⅱ)设,其坐标满足

消去y并整理得,

故.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 6分

,即.而,

于是.

所以时,,故.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 8分

当时,,.

而,

所以.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 12分

 

 

  • 答案
关闭