20.(本小题满分12分)
在数列,是各项均为正数的等比数列,设.
(Ⅰ)数列是否为等比数列?证明你的结论;
(Ⅱ)设数列,的前项和分别为,.若,,
求数列的前项和.
本小题主要考查等差数列,等比数列,对数等基础知识,
考查综合运用数学知识解决问题的能力.满分12分.
解:(Ⅰ)是等比数列.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 2分
证明:设的公比为,的公比为,则
,故为等比数列.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 5分
(Ⅱ)数列和分别是公差为和的等差数列.
由条件得,即
.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 7分
故对,,…,
.于是
将代入得,,.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 10分
从而有.所以数列的前项和为
.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 12分
21.(本小题满分12分)
在平面直角坐标系中,点P到两点,的距离之和等于4,
设点P的轨迹为.
(Ⅰ)写出C的方程;
(Ⅱ)设直线与C交于A,B两点.k为何值时?
此时的值是多少?
本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,
考查综合运用解析几何知识解决问题的能力.满分12分.
解:
(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦点,
长半轴为2的椭圆.它的短半轴,
故曲线C的方程为.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 4分
(Ⅱ)设,其坐标满足
消去y并整理得,
故.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 6分
,即.而,
于是.
所以时,,故.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 8分
当时,,.
,
而,
所以.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 12分
- 答案