(Ⅱ)由题意知一周的销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3,

故所求的概率为

    (?).・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 8分

    (?).・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 12分

 

 

19.(本小题满分12分)

(Ⅰ)证明:平面PQEF和平面PQGH互相垂直;

(Ⅱ)证明:截面PQEF和截面PQGH面积之和是定值,

并求出这个值;

(Ⅲ)若,求与平面PQEF所成角的正弦值.

 

本小题主要考查空间中的线面关系和面面关系,解三角形等基础知识,

考查空间想象能力与逻辑思维能力.满分12分.

 

 

解法一:

(Ⅰ)证明:在正方体中,,,

又由已知可得,,,

所以,,所以平面.

所以平面和平面互相垂直.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 4分

(Ⅱ)证明:由(Ⅰ)知

,又截面PQEF和截面PQGH都是矩形,且PQ=1,所以截面PQEF和截面PQGH面积之和是

,是定值.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 8分

(Ⅲ)解:设交于点,连结,

所以为与平面所成的角.

因为,所以分别为

,,,的中点.

可知,.

所以.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 12分

解法二:

D为原点,射线DA,DC,DD′分别为x,y,z轴的正半轴建立如图的空间

直角坐标系D-xyz.由已知得,故

,,,

,,.

(Ⅰ)证明:在所建立的坐标系中,可得

因为,所以是平面PQEF的法向量.

因为,所以是平面PQGH的法向量.

因为,所以,所以平面PQEF和平面PQGH互相垂直.…4分

(Ⅱ)证明:因为,所以,又,

所以PQEF为矩形,同理PQGH为矩形.

在所建立的坐标系中可求得,,

所以,又,

所以截面PQEF和截面PQGH面积之和为,是定值.・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 8分

(Ⅲ)解:由(Ⅰ)知是平面的法向量.

由为中点可知,分别为,,的中点.

所以,,因此与平面所成角的正弦值等于

.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 12分

 

 

  • 答案
关闭