(?)设AM的方程为x=xy+1,代入=1得(3t2+4)y2+6ty-9=0.

设A(x1,y1),M(x2,y2),则有:y1+y2=

|y1-y2|=

令3t2+4=λ(λ≥4),则

|y1-y2|=

因为λ≥4,0<

|y1-y2|有最大值3,此时AM过点F.

△AMN的面积S△AMN=

解法二:

(Ⅰ)问解法一:

(Ⅱ)(?)由题意得F(1,0),N(4,0).

设A(m,n),则B(m,-n)(n≠0),              ……①

AF与BN的方程分别为:n(x-1)-(m-1)y=0,                  ……②

n(x-4)-(m-4)y=0,                  ……③

由②,③得:当≠.          ……④

由④代入①,得=1(y≠0).

当x=时,由②,③得:

解得与a≠0矛盾.

所以点M的轨迹方程为即点M恒在锥圆C上.

(Ⅱ)同解法一.

 

 

  • 答案
关闭