令f′(x)=0得x=0或x=2.

当x变化时,f′(x)、f(x)的变化情况如下表:

X

(-∞.0)

0

(0,2)

2

(2,+ ∞)

f′(x)

+

0

0

f(x)

极大值

极小值

由此可得:

当0<a<1时,f(x)在(a-1,a+1)内有极大值f(O)=-2,无极小值;

当a=1时,f(x)在(a-1,a+1)内无极值;

当1<a<3时,f(x)在(a-1,a+1)内有极小值f(2)=-6,无极大值;

当a≥3时,f(x)在(a-1,a+1)内无极值.

综上得:当0<a<1时,f(x)有极大值-2,无极小值,当1<a<3时,f(x)有极小值-6,无极大值;当a=1或a≥3时,f(x)无极值.

 

 

 

(22)(本小题满分14分)

如图,椭圆(a>b>0)的一个焦点为F(1,0),且过点(2,0).

(Ⅰ)求椭圆C的方程;

(Ⅱ)若AB为垂直于x轴的动弦,直线l:x=4与x轴交于点N,直线AF与BN交于点M.

 (?)求证:点M恒在椭圆C上;

(?)求△AMN面积的最大值.

解:)本小题主要考查直线与椭圆的位置关系、轨迹方程、不等式等基本知识,考查运算能力和综合解题能力。

解法一:

(Ⅰ)由题设a=2,c=1,从而b2=a2-c2=3,

所以椭圆C前方程为.

(Ⅱ)(i)由题意得F(1,0),N(4,0).

  • 答案
关闭