代入①得n=0.

于是f′(x)=3x2-6x=3x(x-2).

由f′(x)>得x>2或x<0,

故f(x)的单调递增区间是(-∞,0),(2,+∞);

由f′(x)<0得0<x<2,

故f(x)的单调递减区间是(0,2).

(Ⅱ)由(Ⅰ)得f′(x)=3x(x-2),

  • 答案
关闭