如图,在四棱锥E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,
AB=BC=CE=2CD=2,∠BCE=1200,F为AE中点。
(Ⅰ) 求证:平面ADE⊥平面ABE ;
(Ⅱ) 求二面角A―EB―D的大小的余弦值;
(Ⅲ)求点F到平面BDE的距离。
- 答案
如图,在四棱锥E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,
AB=BC=CE=2CD=2,∠BCE=1200,F为AE中点。
(Ⅰ) 求证:平面ADE⊥平面ABE ;
(Ⅱ) 求二面角A―EB―D的大小的余弦值;
(Ⅲ)求点F到平面BDE的距离。