【解析】(1)证明:对y = x2
+ 2求导得:y′= 2x,则y′
即l1,l2的斜率分别为2x1,2x2.又由
得x2 ? kx + 2 = 0 ①
∴x1 + x2 = k即2x1 + 2x2 = 2k.∴2x1,k,2x2成等差数列.
- 答案
【解析】(1)证明:对y = x2
+ 2求导得:y′= 2x,则y′
即l1,l2的斜率分别为2x1,2x2.又由
得x2 ? kx + 2 = 0 ①
∴x1 + x2 = k即2x1 + 2x2 = 2k.∴2x1,k,2x2成等差数列.