21.解; 1)设点M(x0, y0)是函数y = f (x)的图像与其反函数y = f -1 (x)的图像的公

点,则有:y0=f (x0) ,                                    

y0 = f -1 (x0),据反函数的意义有:x0 = f (y0)。                        ………2分

所以:y0 = f (x0)且同时有x0 = f (y0)。

若x0 < y0 ,因为函数y = f (x) 是其定义域上是增函数,

所以有:f (x0) < f (y0) ,即y0 < x0 x0 < y0矛盾,这说明x0 < y0是错误的。

同理可证x0 > y0也是错误的。

所以x0 = y0 ,即函数y = f (x)的图像与其反函数y = f -1 (x)的图像有公共点在直线y = x上;                                                        ………5分

2)构造函数F (x)=a x-x(a>1)

因为F′ (x)= a xlna - 1(a > 1),                               ………6分

令F′ (x)= a xlna - 1≥0,

  • 答案
关闭