∵ F、M分别是BE、BA的中点 ∴ FM∥EA, FM=
EA
∵ EA、CD都垂直于平面ABC ∴ CD∥EA∴ CD∥FM
又 DC=a, ∴ FM=DC ∴四边形FMCD是平行四边形
∴ FD∥MC
FD∥平面ABC
(2) 因M是AB的中点,△ABC是正三角形,所以CM⊥AB
又 CM⊥AE,所以CM⊥面EAB, CM⊥AF, FD⊥AF,
因F是BE的中点, EA=AB所以AF⊥EB.
- 答案
∵ F、M分别是BE、BA的中点 ∴ FM∥EA, FM=
EA
∵ EA、CD都垂直于平面ABC ∴ CD∥EA∴ CD∥FM
又 DC=a, ∴ FM=DC ∴四边形FMCD是平行四边形
∴ FD∥MC
FD∥平面ABC
(2) 因M是AB的中点,△ABC是正三角形,所以CM⊥AB
又 CM⊥AE,所以CM⊥面EAB, CM⊥AF, FD⊥AF,
因F是BE的中点, EA=AB所以AF⊥EB.