17.解:(1)∵a10=5,d=2,∴an=2n-15 

又∵b3=4,q=2,∴bn=2n1

∴cn=(2n-15)・2n1

(2)Sn=c1+c2+c3+…+cn,

2Sn=2c1+2c2+2c3+…+2cn

错位相减,得-Sn=c1+(c2-2c1)+(c3-2c2)+…+(cn-2cn1)-2cn

∵c1=-13,cn-2cn1=2n

∴-Sn=-13+22+23+…+2n-(2n-15)・2n=-13+4(2n1-1)-(2n-15)・2n

=-17+2n+1-(2n-15)・2∴Sn=17+(2n-17)・2n

∴=

=.

  • 答案
关闭