17.解:(1)∵a10=5,d=2,∴an=2n-15
又∵b3=4,q=2,∴bn=2n-1
∴cn=(2n-15)・2n-1
(2)Sn=c1+c2+c3+…+cn,
2Sn=2c1+2c2+2c3+…+2cn
错位相减,得-Sn=c1+(c2-2c1)+(c3-2c2)+…+(cn-2cn-1)-2cn
∵c1=-13,cn-2cn-1=2n
∴-Sn=-13+22+23+…+2n-(2n-15)・2n=-13+4(2n-1-1)-(2n-15)・2n
=-17+2n+1-(2n-15)・2n ∴Sn=17+(2n-17)・2n
∴=
=.
- 答案