1、把一张一百元换成50元的人民币,可得几张?换成10元的人民币可得几张?依次换成5元,2元,1元的人民币,各可得几张?换得的张数y 与面值x之间有怎样的关系呢?请同学们填表:
换成的元数x(元)
50
20
10
5
2
1
换成的张数y(张)
提问:学生你会用含有X的代数式表示Y吗?并提出问题:当换成的元数X变化时,换成的张数Y会怎样变化呢?变量X是Y的函数吗?为什么?这就是我们今天要学生的反比例函数。我们再看课本的例子:
(二)互动探究,学习新课
我们知道,电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,(1)请你用含有R的代数式表示I;(2)利用你写出的关系式完成下表:
R/Ω
20
40
60
80
100
I/A
学生填表完成,提出当R越来越大时,I是怎样变化的?当R越来越小呢?(3)变量I是R的函数吗?为什么?
我们通过控制电阻的变化来实现舞台灯光的效果。在电压一定时,当R变大时,电流I变小,灯光就变暗,相反,当R变小时,电流I变大,灯光变亮。
引导学生看课本P131的例子,京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车完成全程所需的时间t(h)与行驶的平均速度V(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?
(三)学生分组交流讨论
提示学生:数学来源于生活,请同学在生活中找出类似的例子。分组交流讨论,并完成资料的讨论部分。
我们再看例子: 两个变量x和y的乘积等于-6,用函数关系式表示出来是,思考:变量x和y之间的关系是什么?
提出问题:①变量之间的关系具有什么特点?引导学生得出:两个变量的乘积等于非零常数.②如何给反比例函数下定义?
教师总结并和学生一起探索出反比例函数的概念:
一般地,如果两个变量x,y之间的关系可以表示成:(k为常数,K≠0)的形式,那么称y是x的反比例函数。
强调在理解概念时要注意:①常数K≠0;②自变量x不能为零(因为分母为0时,该式没意义);③当可写为时注意x的指数为―1。④由定义不难看出,k可以从两个变量相对应的任意一对对应值的积来求得,只要k确定了,这个函数就确定了。
六、课堂练习:
I、学生完成资料的巩固练习1-4题:即
- 答案