∵-1≤a≤1,∴|x1-x2|=≤3.

要使不等式m2+tm+1≥|x1x2|对任意a∈A及t∈[-1,1]恒成立,

当且仅当m2+tm+1≥3对任意t∈[-1,1]恒成立,

即m2+tm-2≥0对任意t∈[-1,1]恒成立.        ②

g(t)=m2+tm-2=mt+(m2-2),

方法一:

  • 答案
关闭