4.用正弦函数和余弦函数的图象解最简单的三角不等式:通过例2介绍方法

例1 作下列函数的简图

(1)y=sinx,x∈[0,2π],    (2)y=cosx,x∈[0,2π],

 (3)y=1+sinx,x∈[0,2π],  (4)y=-cosx,x∈[0,2π],

解:(1)列表

X

0

Sinx

0

1

0

-1

0

(2)列表

X

0

Cosx

1

0

-1

0

1

(3)列表

X

0

Sinx

0

1

0

-1

0

1+sinx

1

2

1

0

1

(4)列表

X

0

Cosx

1

0

-1

0

1

 -cosx

-1

0

1

0

-1

 

 

 

 

 

教    学    过    程

组织教学          导入新课           讲授新课          归纳小结         布置作业

 

例2 利用正弦函数和余弦函数的图象,求满足下列条件的x的集合:

解:作出正弦函数y=sinx,x∈[0,2π]的图象:

由图形可以得到,满足条件的x的集合为:

解:作出余弦函数y=cos,x∈[0,2π]的图象:

由图形可以得到,满足条件的x的集合为:

五、小结  本节课我们学习了用单位圆中的正弦线、余弦线作正弦函数,余弦函数的图象,用五点法作正弦函数和余弦函数的简图,并用正弦函数和余弦函数的图象解最简单的三角不等式.

六、课后作业:

七、板书设计(略)

八、课后记:

 

 

 

教    学    过    程

组织教学          导入新课           讲授新课          归纳小结         布置作业

 

∴-≤sinx

∴当sinx=-时

ymin=-(--)2+=

说明:解此题注意了条件|x|≤,使本题正确求解,否则认为sinx=-1时y有最小值,产生误解

  • 答案
关闭