即二面角B―A1D―A的大小为

(2)在线段AC上存在一点F,使得EF⊥平面A1BD其位置为AC中点,证明如下:

∵A1B1C1―ABC为直三棱柱 , ∴B1C1//BC

∵由(1)BC⊥平面A1C1CA,∴B1C1⊥平面A1C1CA

∵EF在平面A1C1CA内的射影为C1F ,F为AC中点 ∴C1F⊥A1D   ∴EF⊥A1D同理可证EF⊥BD,         ∴EF⊥平面A1BD

∵E为定点,平面A1BD为定平面,点F唯

解法二:(1)∵A1B1C1―ABC为直三棱住   C1C=CB=CA=2 , AC⊥CB  D、E分别为C1C、B1C1的中点, 建立如图所示的坐标系得

C(0,0,0) B(2,0,0)  A(0,2,0)

C1(0,0,2)  B1(2,0,2)  A­1(0,2,2)

D(0,0,1)  E(1,0,2)            

  • 答案
关闭