19.解法一:(1)分别延长AC,A1D交于G. 过C作CM⊥A1G 于M,连结BM
∵BC⊥平面ACC1A1 ∴CM为BM在平面A1C1CA的内射影
∴BM⊥A1G ∴∠CMB为二面角B―A1D―A的平面角
平面A1C1CA中,C1C=CA=2,D为C1C的中点
∴CG=2,DC=1 在直角三角形CDG中,
- 答案
19.解法一:(1)分别延长AC,A1D交于G. 过C作CM⊥A1G 于M,连结BM
∵BC⊥平面ACC1A1 ∴CM为BM在平面A1C1CA的内射影
∴BM⊥A1G ∴∠CMB为二面角B―A1D―A的平面角
平面A1C1CA中,C1C=CA=2,D为C1C的中点
∴CG=2,DC=1 在直角三角形CDG中,