∴△ADF是正三角形,又AE=DE=1,∴EF⊥AD…………2分
在图2中,A1E⊥EF,BE⊥EF,
∴∠A1EB为二面角A1-EF-B的平面角
由题设条件知此二面角为直二面角,∴A1E⊥BE.
又BE∩EF=E,∴A1E⊥平面BEF,即A1E⊥平面BEP……….4分
(II)在图2中,∵A1E不垂直于A1B,∴A1E是平面A1BP的斜线.
又A1E⊥平面BEP, ∴A1E⊥BP,
从而BP垂直于A1E在平面A1BP内的射影(三垂线定理的逆定理).
设A1E在平面A1BP内的射影为A1Q,且A1Q交BP于点Q,则
∠EA1Q就是A1E与平面A1BP所成的角,…………………6分
且BP⊥A1Q.
在△EBP中,∵BE=BP=2,∠EBP=600, ∴△EBP是等边三角形,∴BE=EP.
- 答案