本小题属于中等题, 区分度较好.得0分者约占18%, 会求椭圆方程得1~4分者有约50%, 会求导数和切线斜率得5~6分者有10.5%, 正确求出切线方程以及进一步求解点M的轨迹方程得7~10分者有16%, 做到第(Ⅱ)问得11~12分者有5.5%. 

[考查意图] 本小题主要考查椭圆的几何性质、平面向量及切线方程、曲线方程等基本知识,考查综合运用数学知识解决问题及推理的能力.

[解答分析] 本小题第(Ⅰ) 问涉及到解析几何、平面向量和导数应用等多方面知识,同时出现椭圆方程、切线方程和点M的轨迹方程等多个方程,因此做第(Ⅰ)问需要我们清楚理解方程等有关的概念,熟练掌握有关的基本知识、常规方法,并能把他们联系在一起综合的运用. 解题思路是:设出切点P的坐标和M点坐标,求出椭圆方程和切线方程,然后求出AB点坐标,再求出M点坐标与切点坐标的关系,消去切点坐标即可得点M的轨迹方程. 做第(Ⅱ)问需要一点运算技巧. 参考解答如下:

  • 答案
关闭