20.(本小题满分16分)
已知数列中,,且对时,有.
(Ⅰ)设数列满足,证明数列为等比数列,并求数列的通项公式;
(Ⅱ)记,求数列的前n项和Sn.
(Ⅰ) 证明:由条件,得,
则.……………………………………2分
即,所以,.
所以是首项为2,公比为2的等比数列. …………………………………4分
,所以.
两边同除以,可得.…………………………………………………6分
于是为以首项,-为公差的等差数列.
所以.………………………………………………8分
(Ⅱ),令,则.
而.
∴. ……………………………………………………………12分
,
∴.………………14分
令Tn=, ①
则2Tn=. ②
①-②,得Tn=,Tn=.
∴.……………………………………………………………16分
评讲建议:
此题主要考查数列的概念、等差数列、等比数列、数列的递推公式、数列的通项求法、数列前n项和的求法,作新数列法,错项相消法,裂项法等知识与方法,同时考查学生的分析问题与解决问题的能力,逻辑推理能力及运算能力.讲评时着重在正确审题,怎样将复杂的问题化成简单的问题,本题主要将一个综合的问题分解成几个常见的简单问题.事实上本题包含了好几个常见的数列题.本题还有一些另外的解法,如第一问的证明还可以直接代.
B.附加题部分
- 答案