19. (本小题满分12分)
方法1:
(Ⅰ)证明:∵点A在平面BCD上的射影落在DC上,即平面ACD经过平面BCD的垂线,∴平面ADC⊥平面BCD. 又∵BC⊥DC,∴BC⊥DA,又∵AD⊥AB, AB∩AC=A
∴AD⊥平面ABC;-----------------------4分
(Ⅱ)∵DA⊥平面ABC. ∴平面ADB⊥平面ABC.过C做CH⊥AB于H,∴CH⊥平面ADB,所以CH为所求。且CH=即点C到平面ABD的距离为. -----------------8分
(Ⅲ)解:取中点,连为中点
由(Ⅱ)中结论可知DA⊥平面ABC,∴EF⊥平面ABC.
过F作FG⊥AC,垂足为G,连结EG,
则GF为EG在平面ABC的射影,
∴∠EGF是所求二面角的平面角.
在△ABC中
FG=BC=, 又EFAD,∴EF=
在△EFG中容易求出∠EGF=45°.
即二面角B-AC-E的大小是45°. . ----------------12分
- 答案